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The laws of motion and heat exchange of gas mixtures are considerably more 
complex than of the one-component gases. It is ovbious on physical grounds that 

the determining parameters (density, velocity and temperature) have generally 
different mean values for the various components. This results in the appearance 
of other macroscopic parameters of flow, in particular, of the mean diffusionrate. 

The presence of such nonzero macroscopic flow parameters violates the fun- 
damental laws of conservation for components of gas. For each of these only the 
law of conservation of mass remains valid, while the laws of conservation of mo- 
mentum and energy are no longer satisfied, The motion of individual compon- 

ents is not defined by equations of conventional aerodynamics such as the Euler, 

the NavierStokes or Barnett’s equations. A redistribution of temperature and 
flow velocities takes place between individual components of gas. Moreover, as 

will be shown subsequentIy~ diffusion rates generate internal stresses and thermal 
fluxes which tend to increase the entropy of the gas mixture and to accelerate 

its approach to equilibrium. 
These additional macroscopic flow parameters substantially affect the motion 

and heat exchange in the gas mixture and are, thus, fundamental parameters of 

the system. In spite of this, they are not determined sufficiently accurately. The 
classical Chapman-Enskog method is used for solving the system of kinetic equa- 
tions on the assumption that diffusion rates and temperatures vanish in the zero 
approximation [ 11. In that method the diffusion rate appears only in the first 

approximation and is naturally inaccurately determined. 
As recently shown, stresses and heat fluxes make their appearance in the second 

approximation thogether with a whole group of additional Barnett terms, Several 

attempts at refining the theory of multicom~nent gas mixtures have been pub- 
lished. The work of Kolodner [2] should be noted in which Grad’s method was 
applied to a gas mixture and a number of complicated integrals were computed, 
and, also, the work of Sirovich [3] in which Kruka’s model equation is used in the 
case of two-component gas mixtures and the method of iteration is substituted 
for that of successive approximation. 

Several variants of the method of successive approximations - the method of 

small parameter - is used here for solving the system of kinetic equations of gas 
mixtures. This is made possible by the presence of the previously mentioned 
macroscopic flow parameters which permits the use of various methods of solu- 
tion construction. 
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The system of kinematic equations can be written in the form 

The density, mean velocity and mean temperature of the s-th component of gas are 

uniquely defined by the distribution function f, (r, v, t) , while the distribution function 
M 

f(r, v, t) = 2 fdr, v, t) 

makes it possible to determine these parameters for the flow of the gas mixture as a 

whole. 
The first method. The system of kinematic equations is solved by the classical 

Chapman-Enskog method described in the monograph [l]. Let us consider this method 
in detail in order toelucidate its peculiarities. and some of its advantages and shortcom- 

ings. 
It is assumed in this method that the probability of collisions between gas molecules 

of one and the same kind and those of different kinds is the same, which presupposes that 
the gas mixture is fairly uniform. Hence in the first approximation diffusion rates and 
temperatures are zero. Since all integrals of collisions in the right-hand sides of the 

system of Eqs. (1) are of the same order, that system can be presented in the form 

where E is a small parameter. let us seek a solution of the form 

f, = fs(O) + &f,(l) t &Zf,(S) + . . . (3) 

In the zero approximation we have 

fL”’ = II, (& y’* exp [ - *;s] 

where rz, is the density of the s-th component of gas. The mean velocity u, and tem- 
perature i‘, of the s+h component in the zero approximation are equal to the mean 
velocity U and temperature T of the whole stream. The diffusion rates w” in that 
approximation are naturally zero. The system of kinetic equations yields the following 

system of transport equations Cl]: 

312 3P “!z apu, ~+~=-P,,a$-~ 
CL a 

where Y,y, q, and W,” are determined by the known expressions in terms of the dis- 

tribution function. 
In the zero approximation we have 

p,, = P&h qa = 0, W," = (j 

In this approximation the motion of the gas mixture as a whole is defined by Euler’s 
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equations, The motion of individual components of gas does not affect in any way the 
over-all motion of gas. 

In the first approximation we have 

pa, = pa, - %p, qa = - ?L d$ ( w,s # 0 
a 

XII this approximation for the diffusion rates in the stream we obtain the following expres- 

where 5 is the number of terms of the expansion in Sonin’s polynomials and vector dc 
is defined by 

dS = grad q 
O( 

.+ $- ?$L gradlnp 
) 

When 5 = 1, Cso5s += 0 and Qso I= 0. Coefficients CsOrs are determined by a 

system of algebraic equations [l] Thus in this approximation the motion of a gas mix- 
ture is defined by the Navier-Stokes equations, although the motion of its individual 
components does not explicitly affect the over-all motion of the gas mixture, For the 
determination of diffusion rates in the stream we obtain the following system of equa- 

tions : 

where D,, is the coefficient of binary diffusion. 
In the second approximation we have 

.I! 

1’Xi = P8,, - oil:3 - -jJ psw,+V,s, $jcr =#= 0, wG1s =#= 0 
5 m.= 1 

It will be seen that in this approximation an additional stress tensor, which depends on 

the diffusion rate in the stream, appears beside the usual viscous tension tensor. The heat 
flux vector has also changed in this approximation. 

Thus the diffusion rates affect directly the laws of motion and heat transfer of a gas 
mixture only in the second approximation. The most general form of the second appro- 

ximation of the Chapman-Enskog method was obtained in [4], as suggested by the author. 
The second method. We shall now assume that the probability of collision bet- 

ween molecules of the same kind is higher than that of collision between molecules of 
different gases, which is equivalent to the assumption of incomplete mixing of gas com- 

ponents in the mixture. Hence, even in the zero approximation the diffusion rates are 
not zero. In this case the collision integrals in the right-hand sides of system (1) are not 
of the same order, and the system of equations can be written in the form 

(4) 

We seek a solution in the form of series (3) and, using the method described in 151. set 

7~ = Is (‘r, v, r, n, (r, z), U, (r, T), T, (r, T)) (5) 

We represent the dependence of parameters rzsr U, and Y’, on fast time in accordance 
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with [5] in the form 
drr (6) 

where Akk’, @and CL”’ are unknown functions which are to be determined. 

Substituting (3) and (6) into (4), taking into account (5), and collecting terms of same 

powers, we obtain a recurrent system of equations for the determination of /!“’ (r. V, t) 

which for T > rl may according to [6] be written as 

The first of Eqs. (7) has the following unique nontrivial solution: 

where n,, 11, and 1’, are so far arbitrary functions r and t which define the s-th 

kind ofgas. The solvability ofconsequent integral equations ofsystem (7) requires the fulfil- 
ment of the following conditions: _. . 

N ~Jl:“’ (fs) dv u L. 

where I+ = msr m,v and mp” are eigenfunctions of the integral operator of the right- 

hand part of (7), and DLk’ (fS) is the nonhomogeneous part of the integral equation in 

the k-th approximation. From these conditions we find all unknown functions 

where 

LI,)~ f,(Q dv 

and the notation 
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where qSt is the reduced initial velocity, x is the angle of deflection, and b is the im- 

pact distance, is used. For T, = T, these integrals coincide with the integrals presented 
in the monograph [l]. 

Hence it is necessary 
gasdynamic parameters 

$I- 

for the solvability of first approximation equations (7) that the 
of gas satisfy the following system of equations : 

The obtained system of equations, similar to Euler’s, shows that averaged stream parame- 

ters II,, u, and T,, can be determined for each component of gas already in the zero 

approximation, thus making it possible to determine diffusion rates and temperatures, 
It will be seen that the equations of conservation of mass are strictly satisfied, while the 

equations of conservation of momentum and the equation of energy have now right-hand 

sides which for IV f W and I’, # T, are nonzero. 
These right-hand parts determine the interaction between the various com~nents of 

gas which tend to equalize the stream temperatures and velocities, The structure of 
these expressions, which were strictly derived for gas mixtures in the range of molecule 
mass ratio from unity to 200-300, is quite important. It is, however, reasonable to assume 
that these expressions can be used for determining with a good approximation finely dis- 
persed mediain a considerably wider range of variation of particle masses. 

Equations (8) obtained by the new method readily yield the zero approximation rela- 
tionship between diffusion rates which were derived by the Chapman-Euskog method in 
the first approximation. In fact, if we assume in addition that 

and that parameters of the whole stream satisfy Euler’s equations, the second of Eqs. (8) 
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yields 

22 
np+ 

+ naD (*) (W’- W”) = d, ) (‘3) 
ST 

where D,, is the coefficient of binary diffusion in the first approximation. It will be 
seen that expression (9) coincides with the one derived above, 

The effectiveness of the new method is now evident, and it is clear that formulas for 
diffusion rates and the diffusion coefficients calculated by the Chapman-Enskog method 

are only very approximate, On the same a~umptions from the last of Eqs. (8) we can 

obtain the expressions 

which make it possible to determine the temperature difference between various com- 

ponents of gas by the diffusion rates in the stream. 
The system of Eqs. (8) obtained in the zero approximation can, thus, be used for inves- 

tigating gasdynamic flows and heat exchange phenomena in multicomponent gas mix- 

tures. A similar system may serve as a reasonable approximation in the investigation 
of motion of finely dispersed systems. 

To determine parameters of the stream in the first approximation we substitute into 

the second of Eqs. (7) the relationship between these parameters in the zero approxima- 
tion by using formulas (8). After some simple transformations we obtain 

(19) 

The sum of integrals in the left-hand part of this expression can be expanded in terms of 
irreducible tensors. Let us represent it in the form of expansion 

2 J,? (0) = /Lo’ & + (v - G$i) -t (2%%P - Q3) qi; + (11) 

T+s 

03,~ (OS’ - 5/3PG~ + ..-I 

Multiplication of each term of the right- and left-hand sides of this equation by 1 ,(l’ - 

rlJa, (~(IJsc(Osp - b,,) and ~0,~ ( os2 - 5/,) and integration yields 

with the relationship 
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Susstituting (11) into formula (lo), we obtain 

where in the particular case of Maxwellian molecules Ds,@ and H,T” are defined by 

0:; -zz ’ 
sss 

TrZ, (6~,0,)aP J,, (0) dV = rr6? ((u, - u,)(u, - uJ)“P 

It will be seen that expressions (12) represent the well known nonhomogeneous linear 
equations of the kinetic theory. We seek a solution of these integral equations of the 

This solution has been fully investigated in the case of a simple gas with B, and c, 

defined by 
B,=_ 5 1 

4n @,“, ’ ns Q$“’ (14) 
s “>b 

Using the first approximation distribution function and (13) and (14), for the stress tensor 
and the heat flux vector we obtain 

where the coefficients of viscosity and thermal conductivity are defined with the use of 

(14) by liT 
I_‘~ = - G n,kT,B, = % =J&- , a,= -c&l, 

5 

RS 
I,? s 

Formula (15) shows that in this method stresses and the heat flux vector are affected 

by diffusion rates and temperatures even in the first approximation. Analysis of formula 
(15) shows that the terms DsraP and Hssa by increasing friction and the heat flux ac- 

celerate the gas mixture tendency to equilibrium. 
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The third method. In many practically important problems the mean velocity 
of the gas mixture as a whole is low or equal zero, while intensive mixing and heat ex- 
change processes take place in it at the same time. These processes are effected by dif- 
fusion rates. For problems of this class the fundamental assumptions of the second method 
are to be used with the addition of condition 

The set of gasdynamic parameters of the mixture is then evidently defined in the zero 

approximation by the system of Eqs. (8) in which T/t’,” and 1va’ are to be substituted 

for u,” and 11,” . 
From this system of zero approximation equations and certain simplifying assumptions 

about low diffusion rates and small temperature differences we obtain the known formulas 

(9) of the kinetic theory of gases. 
We have thus established the laws of dynamics and heat exchange for gas mixtures 

and shown that these are much more complex than those for one-component gases. The 
former are no longer defined by equations of conventional aerohydrodynamics, Intensive 
interaction takes place between the individual components of gas. 

The author thanks Iu. D. Nagornykh and B.M.Markeev for useful discussion and help in 

computing complicated integrals. 
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